|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 443–449
(Mi semr424)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Discrete mathematics and mathematical cybernetics
Ranks of propelinear perfect binary codes
G. K. Guskova, I. Yu. Mogilnykhab, F. I. Solov'evaab a Sobolev Institute of Mathematics, pr. ac. Koptyuga 4,
630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova street 2,
630090, Novosibirsk, Russia
Abstract:
It is proven that for any numbers $n=2^m-1, m\geq 4$ and $r$, such that $n-\log(n+1)\leq r \leq n$ excluding $n=r=63$, $n=127$, $r\in\{126,127\}$ and $n=r=2047$ there exists a propelinear perfect binary code of length $n$ and rank $r$.
Keywords:
propelinear perfect binary codes, rank, transitive codes.
Received October 26, 2012, published May 22, 2013
Citation:
G. K. Guskov, I. Yu. Mogilnykh, F. I. Solov'eva, “Ranks of propelinear perfect binary codes”, Sib. Èlektron. Mat. Izv., 10 (2013), 443–449
Linking options:
https://www.mathnet.ru/eng/semr424 https://www.mathnet.ru/eng/semr/v10/p443
|
Statistics & downloads: |
Abstract page: | 208 | Full-text PDF : | 57 | References: | 41 |
|