Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 200–204 (Mi semr408)  

Mathematical logic, algebra and number theory

A characterization of the simple sporadic groups

A. K. Asboei

Department of Mathematics, Babol Education, Mazandaran, Iran
References:
Abstract: Let $G$ be a finite group, $n_{p}(G)$ be the number of Sylow $p$–subgroup of $G$ and $t(2, G)$ be the maximal number of vertices in cocliques of the prime graph of $G$ containing 2. In this paper we prove that if $G$ is a centerless group with $t(2,G)\geq 2$ and $n_{p}(G)$=$n_{p}(S)$ for every prime $p\in \pi (G)$, where $S$ is the sporadic simple groups, then $S\leq G\leq $Aut$(S)$.
Keywords: Finite Group, simple group, Sylow subgroup.
Received October 28, 2012, published March 4, 2013
Document Type: Article
UDC: 512.5
MSC: 13A99
Language: English
Citation: A. K. Asboei, “A characterization of the simple sporadic groups”, Sib. Èlektron. Mat. Izv., 10 (2013), 200–204
Citation in format AMSBIB
\Bibitem{Asb13}
\by A.~K.~Asboei
\paper A characterization of the simple sporadic groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 200--204
\mathnet{http://mi.mathnet.ru/semr408}
Linking options:
  • https://www.mathnet.ru/eng/semr408
  • https://www.mathnet.ru/eng/semr/v10/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :64
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024