Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 141–149 (Mi semr404)  

This article is cited in 12 scientific papers (total in 12 papers)

Differentical equations, dynamical systems and optimal control

On transparent boundary conditions for the high-order heat equation

D. Suraganab, N. Tokmagambetovab

a Institute of Mathematics and Mathematical Modeling, str. Shevchenko, 28, 050010, Almaty, Kazakhstan
b Al-Farabi Kazakh National University, ave. Al-Farabi, 71, 050040, Almaty, Kazakhstan
References:
Abstract: In this paper we develop an artificial initial boundary value problem for the high-order heat equation in a bounded domain $\Omega$. It is found an unique classical solution of this problem in an explicit form and shown that the solution of the artificial initial boundary value problem is equal to the solution of the infinite problem (Cauchy problem) in $\Omega$.
Keywords: transparent boundary conditions, an artificial initial boundary value problem, a high-order parabolic equation.
Received August 6, 2012, published February 24, 2013
Document Type: Article
UDC: 517.95
MSC: 35K35
Language: English
Citation: D. Suragan, N. Tokmagambetov, “On transparent boundary conditions for the high-order heat equation”, Sib. Èlektron. Mat. Izv., 10 (2013), 141–149
Citation in format AMSBIB
\Bibitem{SurTok13}
\by D.~Suragan, N.~Tokmagambetov
\paper On transparent boundary conditions for the high-order heat equation
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 141--149
\mathnet{http://mi.mathnet.ru/semr404}
Linking options:
  • https://www.mathnet.ru/eng/semr404
  • https://www.mathnet.ru/eng/semr/v10/p141
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024