Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 109–112 (Mi semr401)  

This article is cited in 9 scientific papers (total in 9 papers)

Geometry and topology

On self-adjoint commuting differential operators of rank two

V. N. Davletshina

Novosibirsk State University
Full-text PDF (438 kB) Citations (9)
References:
Abstract: Commutativity equations for self-adjoint rank two differential operators of orders $4$ and $4g+2$ are studied in this paper. New nontrivial examples of such operators with smooth coefficients are constructed.
Keywords: commuting differential operators.
Received January 15, 2013, published February 18, 2013
Document Type: Article
UDC: 517.43
MSC: 47E05
Language: Russian
Citation: V. N. Davletshina, “On self-adjoint commuting differential operators of rank two”, Sib. Èlektron. Mat. Izv., 10 (2013), 109–112
Citation in format AMSBIB
\Bibitem{Dav13}
\by V.~N.~Davletshina
\paper On self-adjoint commuting differential operators of rank two
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 109--112
\mathnet{http://mi.mathnet.ru/semr401}
Linking options:
  • https://www.mathnet.ru/eng/semr401
  • https://www.mathnet.ru/eng/semr/v10/p109
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024