Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 192–193 (Mi semr40)  

Short communications

An algorithm of finding planar surfaces in three-manifolds

E. A. Sbrodova

Chelyabinsk State University
References:
Abstract: This paper is devoted to the question: does there exist an algorithm to decide whether or not a given $3$-manifold contains a proper essential planar surface? By a planar surface we mean a punctured disc.
There is an algorithm, due to W. Jaco, to decide whether a $3$-manifold admits a proper essential disc, i.e., whether it is boundary reducible. A close result, an algorithm allow us to say whether a manifold contains a proper essential disc with a given boundary, was obtained by W. Haken in 60-th. In 1998 W. Jaco, H. Rubinstein and E. Sedgwick described an algorithm to decide whether or not a given linkmanifold contains a proper essential planar surface (a link-manifold is a compact orientable $3$-manifold whose boundary consists of tori) [1]. We generalize this result to manifolds with arbitrary boundaries.
A slope on the boundary of a $3$-manifold $M$ is the isotopy class of a finite set of disjoint simple closed curves $\{\alpha_1,\dots,\alpha_n\}$ in $\partial M$ which are nontrivial and pairwise nonparallel. We say that the boundary of a proper surface $F$ has a slope $\alpha=\{\alpha_1,\dots,\alpha_n\}$ if the boundary components of $F$ are each parallel to one of the curves $\alpha_1,\dots,\alpha_n$.
Received October 15, 2005, published October 17, 2005
Bibliographic databases:
Document Type: Article
UDC: 515.16
MSC: 57M25
Language: English
Citation: E. A. Sbrodova, “An algorithm of finding planar surfaces in three-manifolds”, Sib. Èlektron. Mat. Izv., 2 (2005), 192–193
Citation in format AMSBIB
\Bibitem{Sbr05}
\by E.~A.~Sbrodova
\paper An algorithm of finding planar surfaces in three-manifolds
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 192--193
\mathnet{http://mi.mathnet.ru/semr40}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2177993}
\zmath{https://zbmath.org/?q=an:1150.57304}
Linking options:
  • https://www.mathnet.ru/eng/semr40
  • https://www.mathnet.ru/eng/semr/v2/p192
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :49
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024