Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2004, Volume 1, Pages 38–46 (Mi semr4)  

This article is cited in 12 scientific papers (total in 12 papers)

Research papers

Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in $\mathbb CP^2$

A. E. Mironov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We associate a periodic two-dimensional Schrödinger operator to every Lagrangian torus in $\mathbb CP^2$ and define the spectral curve of a torus as the Floquet spectrum on this operator on the zero energy level. In this event minimal Lagrangian tori correspond to potential operators. We show that the Novikov–Veselov hierarchy of equations induces integrable deformations of a minimal Lagrangian torus in $\mathbb CP^2$ preserving the spectral curve.
Received July 26, 2004, published September 16, 2004
Bibliographic databases:
Document Type: Article
UDC: 514.752.4, 517.984
MSC: 35Q53, 53A10
Language: Russian
Citation: A. E. Mironov, “Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in $\mathbb CP^2$”, Sib. Èlektron. Mat. Izv., 1 (2004), 38–46
Citation in format AMSBIB
\Bibitem{Mir04}
\by A.~E.~Mironov
\paper Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in~$\mathbb CP^2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2004
\vol 1
\pages 38--46
\mathnet{http://mi.mathnet.ru/semr4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132446}
\zmath{https://zbmath.org/?q=an:1082.35136}
Linking options:
  • https://www.mathnet.ru/eng/semr4
  • https://www.mathnet.ru/eng/semr/v1/p38
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024