Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 186–189 (Mi semr38)  

Short communications

An $L_p$-criterion of amenability for a locally compact group

Ya. A. Kopylov

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We establish a criterion of amenability for a subgroup $H$ of a second countable locally compact topological group $G$ in terms of the left regular representation of $H$ in $L_p(G)$.
Received October 7, 2005, published October 13, 2005
Bibliographic databases:
Document Type: Article
UDC: 512.546.3
MSC: 22D10, 46E30
Language: English
Citation: Ya. A. Kopylov, “An $L_p$-criterion of amenability for a locally compact group”, Sib. Èlektron. Mat. Izv., 2 (2005), 186–189
Citation in format AMSBIB
\Bibitem{Kop05}
\by Ya.~A.~Kopylov
\paper An $L_p$-criterion of amenability for a~locally compact group
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 186--189
\mathnet{http://mi.mathnet.ru/semr38}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2177991}
\zmath{https://zbmath.org/?q=an:1096.43001}
Linking options:
  • https://www.mathnet.ru/eng/semr38
  • https://www.mathnet.ru/eng/semr/v2/p186
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :41
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024