|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 460–463
(Mi semr378)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical logic, algebra and number theory
Wolstenholme's theorem for binomial coefficients
A. S. Dzhumadil'daev, D. A. Yeliussizov Kazakh-British Technical University, Tole be 59, 050000, Almaty, Kazakhstan
Abstract:
We prove that the numerator of $\sum_{i=k}^{p-1}\binom{i}{k}^{-1}$ is divisible by $p^2$ for infinitely many primes $p$ if and only if $k=1$.
Keywords:
binomial coefficient, Wolstenholme's theorem.
Received February 14, 2012, published October 23, 2012
Citation:
A. S. Dzhumadil'daev, D. A. Yeliussizov, “Wolstenholme's theorem for binomial coefficients”, Sib. Èlektron. Mat. Izv., 9 (2012), 460–463
Linking options:
https://www.mathnet.ru/eng/semr378 https://www.mathnet.ru/eng/semr/v9/p460
|
Statistics & downloads: |
Abstract page: | 1272 | Full-text PDF : | 148 | References: | 80 |
|