Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 460–463 (Mi semr378)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Wolstenholme's theorem for binomial coefficients

A. S. Dzhumadil'daev, D. A. Yeliussizov

Kazakh-British Technical University, Tole be 59, 050000, Almaty, Kazakhstan
Full-text PDF (452 kB) Citations (1)
References:
Abstract: We prove that the numerator of $\sum_{i=k}^{p-1}\binom{i}{k}^{-1}$ is divisible by $p^2$ for infinitely many primes $p$ if and only if $k=1$.
Keywords: binomial coefficient, Wolstenholme's theorem.
Received February 14, 2012, published October 23, 2012
Document Type: Article
UDC: 511.1
MSC: 11A07
Language: English
Citation: A. S. Dzhumadil'daev, D. A. Yeliussizov, “Wolstenholme's theorem for binomial coefficients”, Sib. Èlektron. Mat. Izv., 9 (2012), 460–463
Citation in format AMSBIB
\Bibitem{DzhYel12}
\by A.~S.~Dzhumadil'daev, D.~A.~Yeliussizov
\paper Wolstenholme's theorem for binomial coefficients
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 460--463
\mathnet{http://mi.mathnet.ru/semr378}
Linking options:
  • https://www.mathnet.ru/eng/semr378
  • https://www.mathnet.ru/eng/semr/v9/p460
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1272
    Full-text PDF :148
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024