Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 141–144 (Mi semr37)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

$\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component

A. T. Gainov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (147 kB) Citations (1)
References:
Abstract: We consider $\mathbb Z_3$-orthograded nondegenerate quasimonocomposition algebras $A=A_0\oplus A_1\oplus A_2$ such that $\dim A_0=1$ and $A_1A_2=0$. It is proved that all algebras in this class $W$ are solvable of solvability index either two or three. All non bi-isotropic orthogonal nonisomorphic algebras $A$ of $W$ of least dimension, which is equal to $9$, are classified. An infinite series of algebras $C_r$ in $W$ of dimension $\dim C_r=8r+1$ is constructed for every $r\in\mathbb N=\{1,2,\dots\}$. All algebras $C_r$ are solvable of solvability index $3$ and nilpotent of nil-index $5$.
Received August 17, 2005, published August 18, 2005
Bibliographic databases:
Document Type: Article
UDC: 512.554
MSC: 16P10, 16W20
Language: Russian
Citation: A. T. Gainov, “$\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component”, Sib. Èlektron. Mat. Izv., 2 (2005), 141–144
Citation in format AMSBIB
\Bibitem{Gai05}
\by A.~T.~Gainov
\paper $\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 141--144
\mathnet{http://mi.mathnet.ru/semr37}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2177987}
\zmath{https://zbmath.org/?q=an:1096.17001}
Linking options:
  • https://www.mathnet.ru/eng/semr37
  • https://www.mathnet.ru/eng/semr/v2/p141
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :40
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024