Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 377–381 (Mi semr362)  

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Fine and Wilf’s theorem for permutations

A. È. Frid

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (436 kB) Citations (1)
References:
Abstract: We try to extend to permutations the famous Fine and Wilf’s theorem valid for words and see that it is possible to do it only partially: the theorem is valid for coprime periods, but if the periods are not coprime, there is another statement valid instead.
Keywords: Fine and Wilf’s theorem, periodicity, permutations, infinite permutations.
Received July 10, 2012, published August 22, 2012
Document Type: Article
UDC: 519.101
MSC: 05A05
Language: English
Citation: A. È. Frid, “Fine and Wilf’s theorem for permutations”, Sib. Èlektron. Mat. Izv., 9 (2012), 377–381
Citation in format AMSBIB
\Bibitem{Fri12}
\by A.~\`E.~Frid
\paper Fine and Wilf’s theorem for permutations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 377--381
\mathnet{http://mi.mathnet.ru/semr362}
Linking options:
  • https://www.mathnet.ru/eng/semr362
  • https://www.mathnet.ru/eng/semr/v9/p377
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :71
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024