Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 294–305 (Mi semr357)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical logic, algebra and number theory

A solution of Wielandt's problem for the sporadic groups

N. Ch. Manzaeva

Novosibirsk State University, Russia
Full-text PDF (580 kB) Citations (4)
References:
Abstract: Let $\pi$ be a set of primes. A finite group $G$ is a $D_\pi$-group if all maximal $\pi$-subgroups of $G$ are conjugate. In 1979 H. Wielandt posed the following problem: in which finite simple groups every subgroup is a $D_\pi$-group? We solve this problem for the sporadic groups.
Keywords: finite group, sporadic group, $D_\pi$-group.
Received April 18, 2012, published June 16, 2012
Document Type: Article
UDC: 512.542
MSC: 20D20
Language: Russian
Citation: N. Ch. Manzaeva, “A solution of Wielandt's problem for the sporadic groups”, Sib. Èlektron. Mat. Izv., 9 (2012), 294–305
Citation in format AMSBIB
\Bibitem{Man12}
\by N.~Ch.~Manzaeva
\paper A solution of Wielandt's problem for the sporadic groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 294--305
\mathnet{http://mi.mathnet.ru/semr357}
Linking options:
  • https://www.mathnet.ru/eng/semr357
  • https://www.mathnet.ru/eng/semr/v9/p294
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :134
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024