Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 266–284 (Mi semr355)  

Mathematical logic, algebra and number theory

Axioms of metabelian Lie Q-algebras and U-algebras

E. Yu. Daniyarova

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: This is the third paper in the series of three, which are in the series of papers, the aim of which is to construct algebraic geometry over metabelian Lie algebras. We give the recursive set of universal formulas, axiomatizing universal class of all matabelian Lie U-algebras, and the recursive set of quasiidentities, axiomatizing quasivariety of all matabelian Lie Q-algebras. We have come to the characterization of finite generated objects from these universal classes. We show connections between such algebras and diophantine projective varieties over a field.
Keywords: matabelian Lie algebra over a field, Q-algebra, U-algebra, U-primary algebra, Q-semiprimary algebra, quasivariety, universal closure, diophantine projective variety over a field.
Received September 11, 2008, published May 26, 2012
Document Type: Article
UDC: 512.554.3+510.67
MSC: 17B99, 08C10
Language: Russian
Citation: E. Yu. Daniyarova, “Axioms of metabelian Lie Q-algebras and U-algebras”, Sib. Èlektron. Mat. Izv., 9 (2012), 266–284
Citation in format AMSBIB
\Bibitem{Dan12}
\by E.~Yu.~Daniyarova
\paper Axioms of metabelian Lie Q-algebras and U-algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 266--284
\mathnet{http://mi.mathnet.ru/semr355}
Linking options:
  • https://www.mathnet.ru/eng/semr355
  • https://www.mathnet.ru/eng/semr/v9/p266
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024