Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 247–255 (Mi semr352)  

This article is cited in 9 scientific papers (total in 9 papers)

Geometry and topology

Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane

A. D. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (472 kB) Citations (9)
References:
Abstract: The Heron formula relates the area of an Euclidean triangle to its side lengths. Indian mathematician and astronomer Brahmagupta, in the seventh century, gave the analogous formulas for a convex cyclic quadrilateral. Several non-Euclidean versions of the Heron theorem have been known for a long time.
In this paper we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of an equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmahupta formula for such quadrilaterals.
Keywords: Heron formula, Brahmagupta formula, cyclic polygon, hyperbolic quadrilateral.
Received January 15, 2012, published May 12, 2012
Document Type: Article
UDC: 514.13
MSC: 51M09
Language: English
Citation: A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. Èlektron. Mat. Izv., 9 (2012), 247–255
Citation in format AMSBIB
\Bibitem{Med12}
\by A.~D.~Mednykh
\paper Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 247--255
\mathnet{http://mi.mathnet.ru/semr352}
Linking options:
  • https://www.mathnet.ru/eng/semr352
  • https://www.mathnet.ru/eng/semr/v9/p247
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024