Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 227–246 (Mi semr351)  

Differentical equations, dynamical systems and optimal control

Mathematical models of a hydraulic shock in a viscous liquid

I. V. Nekrasova

Belgorod State University
References:
Abstract: In the present paper we derive mathematical models of the pressure distribution field near the well during the hydraulic shock. To get these models we follow the scheme, suggested by J. Keller and R. Burridge. The scheme is based upon a rigorous homogenization of the exact mathematical model, describing on a microscopic level the joint motion of an elastic solid skeleton and a viscous fluid filling the pores.
Keywords: hydraulic shock, Stokes and Lamé's equations, two-scale convergence.
Received January 25, 2012, published April 11, 2012
Document Type: Article
UDC: 517.958:531.72, 517.958:539.3(4)
MSC: 35M20, 74F10, 76S05
Language: Russian
Citation: I. V. Nekrasova, “Mathematical models of a hydraulic shock in a viscous liquid”, Sib. Èlektron. Mat. Izv., 9 (2012), 227–246
Citation in format AMSBIB
\Bibitem{Nek12}
\by I.~V.~Nekrasova
\paper Mathematical models of a hydraulic shock in a viscous liquid
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 227--246
\mathnet{http://mi.mathnet.ru/semr351}
Linking options:
  • https://www.mathnet.ru/eng/semr351
  • https://www.mathnet.ru/eng/semr/v9/p227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :96
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024