Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2012, Volume 9, Pages 151–155 (Mi semr344)  

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Simple algorithm for finding a second Hamilton cycle

Tommy Jensen

Kyungpook National University, Kyungpook National University, 1370-1 Sangyeok, Buk-gu, 702-701 Daegu, Republic of Korea
Full-text PDF (421 kB) Citations (1)
References:
Abstract: A classical theorem of C. A. B. Smith states that for every edge $e$ of a cubic graph $G$, the number of Hamilton cycles containing $e$ in $G$ is an even number. Tutte proved Smith's theorem using a nonconstructive parity argument. Thomason later invented the lollipop algorithm and provided a first constructive proof. We describe a simple algorithm based on Tutte's proof, thus providing an alternative constructive proof of Smith's theorem. Also this algorithm is exponential in the worst case.
Keywords: Smith Theorem, cubic graph, Hamilton cycle, lollipop algorithm, parity argument.
Received January 16, 2012, published January 27, 2012
Document Type: Article
UDC: 519.712.3
MSC: 05C45, 05C85, 68R10
Language: English
Citation: Tommy Jensen, “Simple algorithm for finding a second Hamilton cycle”, Sib. Èlektron. Mat. Izv., 9 (2012), 151–155
Citation in format AMSBIB
\Bibitem{Jen12}
\by Tommy Jensen
\paper Simple algorithm for finding a second Hamilton cycle
\jour Sib. \`Elektron. Mat. Izv.
\yr 2012
\vol 9
\pages 151--155
\mathnet{http://mi.mathnet.ru/semr344}
Linking options:
  • https://www.mathnet.ru/eng/semr344
  • https://www.mathnet.ru/eng/semr/v9/p151
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :15
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024