|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2011, Volume 8, Pages 284–295
(Mi semr324)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
On finitely Lipschitz space mappings
R. R. Salimov Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences, Donetsk
Abstract:
It is established that a ring $Q$-homeomorphism with respect to $p$-modulus in $\mathbb R^n$, $n\geqslant2$, is finitely Lipschitz if $n-1<p<n$ and if the mean integral value of $Q(x)$ over infinitesimal balls $B(x_0,\varepsilon)$ is finite everywhere.
Keywords:
$Q$-homeomorphisms, $p$-modulus, $p$-capacity, finite Lipschitz.
Received May 23, 2011, published September 28, 2011
Citation:
R. R. Salimov, “On finitely Lipschitz space mappings”, Sib. Èlektron. Mat. Izv., 8 (2011), 284–295
Linking options:
https://www.mathnet.ru/eng/semr324 https://www.mathnet.ru/eng/semr/v8/p284
|
Statistics & downloads: |
Abstract page: | 674 | Full-text PDF : | 111 | References: | 66 |
|