Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 264–290 (Mi semr32)  

Research papers

$\overline\partial$-closed extension of $CR$-forms with singularities on a generic manifold

T. N. Nikitina

Krasnoyarsk State Technical University
References:
Abstract: Let $\Gamma$ be a smooth generic manifold with nonzero Levi form in a domain of holomorphy $\Omega\subset\mathbb C^n$, $n>1$. Let $\Omega_\Gamma\subset\Omega$ be the domain adjacent to $\Gamma$ to which all $CR$-forms defined on $\Gamma$ extend $\overline\partial$-closely. Let $K=\widehat K_\Omega\subset\Omega$ be a holomorphically convex compact set. We show that every $CR$-form on $\Gamma\setminus K$ of bidegree $(l,r)$ with coefficients in $C^1(\Gamma\setminus K)$ extends $\overline\partial$-closely to $\Omega_\Gamma\setminus K$. When $n=2$ and $r=0$ the manifold $\Gamma$ must be closed $(\partial\Gamma=0)$. The proof uses an integral representation, obtained from the integral representation of Airapetyan and Khenkin, in which the integration is carried out over the $CR$-manifold $\Gamma$ only (but not over its complement).
In this paper we also consider the problem of $\overline\partial$-closed continuation of $CR$-forms given on $\Gamma\setminus K$, where $\Gamma$ is a generic manifold with nondegenerate Levi form, and $K$ is a meromorphically $p$-convex compactum. We derive some conditions on $\Gamma$, relative to $p$-convexity and $q$-concavity, under which every $CR$-form with smooth coefficients given on $\Gamma\setminus K$ extends $\overline\partial$-closely in some domain $\Omega_\Gamma\setminus K$, where $\Omega_\Gamma$ is a wedge domain with edge $\Gamma$. Our results are local.
Received June 30, 2005, published December 16, 2005
Bibliographic databases:
Document Type: Article
UDC: 517.55
MSC: 32SXX
Language: Russian
Citation: T. N. Nikitina, “$\overline\partial$-closed extension of $CR$-forms with singularities on a generic manifold”, Sib. Èlektron. Mat. Izv., 2 (2005), 264–290
Citation in format AMSBIB
\Bibitem{Nik05}
\by T.~N.~Nikitina
\paper $\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 264--290
\mathnet{http://mi.mathnet.ru/semr32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2206190}
\zmath{https://zbmath.org/?q=an:1096.32006}
Linking options:
  • https://www.mathnet.ru/eng/semr32
  • https://www.mathnet.ru/eng/semr/v2/p264
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :76
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024