Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2011, Volume 8, Pages 116–122 (Mi semr309)  

Transparent Ore extensions over weak $\sigma$-rigid rings

V. K. Bhat, Kiran Chib

School of Mathematics, SMVD University, Katra, 182320, J and K, India
References:
Abstract: Recall that a Noetherian ring $R$ is said to be a Transparent ring if there exist irreducible ideals $I_j$, $1\leq j\leq n$ such that $\bigcap_{j=1}^n I_j = 0$ and each $R/I_j$ has a right Artinian quotient ring. Let $R$ be a commutative Noetherian ring, which is also an algebra over $\mathbb Q$ (the field of rational numbers); $\sigma$ an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Also let $R$ be a weak $\sigma$-rigid ring (i.e. $a\sigma(a)\in N(R)$ if and only if $a\in N(R)$, where $N(R)$ the set of nilpotent elements of R). Then we prove that $R[x;\sigma,\delta]$ is a Transparent ring.
Keywords: automorphism, $\sigma$-derivation, weak $\sigma$-rigid ring, quotient ring, transparent ring.
Received May 26, 2011, published June 23, 2011
Document Type: Article
UDC: 512.552.24
MSC: 16S36
Language: English
Citation: V. K. Bhat, Kiran Chib, “Transparent Ore extensions over weak $\sigma$-rigid rings”, Sib. Èlektron. Mat. Izv., 8 (2011), 116–122
Citation in format AMSBIB
\Bibitem{BhaChi11}
\by V.~K.~Bhat, Kiran Chib
\paper Transparent Ore extensions over weak $\sigma$-rigid rings
\jour Sib. \`Elektron. Mat. Izv.
\yr 2011
\vol 8
\pages 116--122
\mathnet{http://mi.mathnet.ru/semr309}
Linking options:
  • https://www.mathnet.ru/eng/semr309
  • https://www.mathnet.ru/eng/semr/v8/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024