Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2011, Volume 8, Pages 48–52 (Mi semr302)  

Short communications

Some properties of self-similar convex polytopes

A. V. Tetenov, I. B. Davydkin

Gorno-Altaisk State University, Gorno-Altaisk, Russia
References:
Abstract: We show that for each semigroup $\mathrm G$ of similarities defining the self-similarity structure on a convex self-similar polytope $K$ there is an edge $A$ of $K$ such that the fixed points of homotheties $g\in G$ are dense in $A$.
Keywords: self-similar set, fractal, convex polytope, graph-directed IFS, homothety, semigroup.
Received January 25, 2011, published February 14, 2011
Document Type: Article
UDC: 514.8, 515.12
MSC: 28A80
Language: English
Citation: A. V. Tetenov, I. B. Davydkin, “Some properties of self-similar convex polytopes”, Sib. Èlektron. Mat. Izv., 8 (2011), 48–52
Citation in format AMSBIB
\Bibitem{TetDav11}
\by A.~V.~Tetenov, I.~B.~Davydkin
\paper Some properties of self-similar convex polytopes
\jour Sib. \`Elektron. Mat. Izv.
\yr 2011
\vol 8
\pages 48--52
\mathnet{http://mi.mathnet.ru/semr302}
Linking options:
  • https://www.mathnet.ru/eng/semr302
  • https://www.mathnet.ru/eng/semr/v8/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :100
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024