Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2011, Volume 8, Pages 39–47 (Mi semr298)  

Research papers

On $s$-semipermutable and weakly $s$-permutable subgroups

Ch. Li

School of Mathematical Science, Xuzhou Normal University, Xuzhou, China
References:
Abstract: Let $H$ be a subgroup of a finite group $G$. $H$ is said to be $s$-semipermutable in $G$ if $HG_{p}=G_{p}H$ for any Sylow $p$-subgroup $G_{p}$ of $G$ with $(p,|H|)=1$; $H$ is called weakly $s$-permutable in $G$ if there exists a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leq H_{sG}$, where $H_{sG}$ is the subgroup of $H$ generated by all those subgroups of $H$ which are $s$-permutable in $G$. We fix in every non-cyclic Sylow subgroup $P$ of $G$ a subgroup $D$ with $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$-semipermutable or weakly $s$-permutable in $G$. Some recent results are generalized and unified.
Keywords: $s$-semipermutable, weakly $s$-permutable, $p$-nilpotent, the generalized Fitting subgroup.
Received July 12, 2010, published January 24, 2011
Document Type: Article
UDC: 512.542
MSC: 20D10, 20D20
Language: English
Citation: Ch. Li, “On $s$-semipermutable and weakly $s$-permutable subgroups”, Sib. Èlektron. Mat. Izv., 8 (2011), 39–47
Citation in format AMSBIB
\Bibitem{Li11}
\by Ch.~Li
\paper On $s$-semipermutable and weakly $s$-permutable subgroups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2011
\vol 8
\pages 39--47
\mathnet{http://mi.mathnet.ru/semr298}
Linking options:
  • https://www.mathnet.ru/eng/semr298
  • https://www.mathnet.ru/eng/semr/v8/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :81
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024