Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages C.290–C.306 (Mi semr289)  

Proceedings of conferences

Inverse problem of identification of diffusion coefficient in convection-diffusion-reaction equation

I. S. Vakhitov

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
References:
Abstract: Inverse extremum problem of identification of the diffusion coefficient in an elliptic equation of convection-diffusion-reaction is formulated. The solvability of this problem is proved, the application of Lagrange principle is justified and the optimality system is constructed for specific cost functional. The numerical algorithm based on Newton-method of nonlinear optimization and finite-element discretization of linear elliptic problems is developed and realized on computer. The results of numerical experiments are discussed.
Keywords: inverse problem, diffusion coefficient, Newton's method.
Received November 29, 2009
Document Type: Article
UDC: 519.63
MSC: 76D55
Language: Russian
Citation: I. S. Vakhitov, “Inverse problem of identification of diffusion coefficient in convection-diffusion-reaction equation”, Sib. Èlektron. Mat. Izv., 7 (2010), C.290–C.306
Citation in format AMSBIB
\Bibitem{Vak10}
\by I.~S.~Vakhitov
\paper Inverse problem of identification of diffusion coefficient in convection-diffusion-reaction equation
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages C.290--C.306
\mathnet{http://mi.mathnet.ru/semr289}
Linking options:
  • https://www.mathnet.ru/eng/semr289
  • https://www.mathnet.ru/eng/semr/v7/p290
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025