|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 458–460
(Mi semr260)
|
|
|
|
Research papers
The component number of links corresponding to lattices
L. R. Nabeeva Chelyabinsk State University
Abstract:
We give a new short proof of the main result of [1], which states that any rectangular $(m\times n)$-lattice determines a projection of a $d$-component link, where $d=\mathrm{gcd}(m+1,n+1)$.
Keywords:
Lattice, medial graph, billiard trajectories, geodesic curves, flat torus.
Received November 19, 2010, published December 4, 2010
Citation:
L. R. Nabeeva, “The component number of links corresponding to lattices”, Sib. Èlektron. Mat. Izv., 7 (2010), 458–460
Linking options:
https://www.mathnet.ru/eng/semr260 https://www.mathnet.ru/eng/semr/v7/p458
|
Statistics & downloads: |
Abstract page: | 186 | Full-text PDF : | 60 | References: | 46 |
|