Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 458–460 (Mi semr260)  

Research papers

The component number of links corresponding to lattices

L. R. Nabeeva

Chelyabinsk State University
References:
Abstract: We give a new short proof of the main result of [1], which states that any rectangular $(m\times n)$-lattice determines a projection of a $d$-component link, where $d=\mathrm{gcd}(m+1,n+1)$.
Keywords: Lattice, medial graph, billiard trajectories, geodesic curves, flat torus.
Received November 19, 2010, published December 4, 2010
Document Type: Article
UDC: 515.16
MSC: 57M25
Language: Russian
Citation: L. R. Nabeeva, “The component number of links corresponding to lattices”, Sib. Èlektron. Mat. Izv., 7 (2010), 458–460
Citation in format AMSBIB
\Bibitem{Nab10}
\by L.~R.~Nabeeva
\paper The component number of links corresponding to lattices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 458--460
\mathnet{http://mi.mathnet.ru/semr260}
Linking options:
  • https://www.mathnet.ru/eng/semr260
  • https://www.mathnet.ru/eng/semr/v7/p458
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :58
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024