Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 218–221 (Mi semr26)  

This article is cited in 1 scientific paper (total in 1 paper)

Research papers

Embedding arbitrary graphs into strongly regular and distance regular graphs

D. G. Fon-Der-Flaass

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (123 kB) Citations (1)
References:
Abstract: We show that every simple graph on x vertices is an induced subgraph of some strongly regular graph on fewer than $4x^2$ vertices; which, up to a constant factor, coincides with the existing lower bound. We also show that every simple graph on $x$ vertices is an induced subgraph of some distance regular graph of diameter $3$ on fewer than $8x^3$ vertices, and every simple bipartite graph on $x$ vertices is an induced subgraph of some distance regular bipartite graph of diameter $3$ on fewer than $8x^2$ vertices.
Received October 4, 2005, published November 3, 2005
Bibliographic databases:
Document Type: Article
UDC: 517.920
MSC: 05E30
Language: English
Citation: D. G. Fon-Der-Flaass, “Embedding arbitrary graphs into strongly regular and distance regular graphs”, Sib. Èlektron. Mat. Izv., 2 (2005), 218–221
Citation in format AMSBIB
\Bibitem{Fon05}
\by D.~G.~Fon-Der-Flaass
\paper Embedding arbitrary graphs into strongly regular and distance regular graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 218--221
\mathnet{http://mi.mathnet.ru/semr26}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2178000}
\zmath{https://zbmath.org/?q=an:1094.05057}
Linking options:
  • https://www.mathnet.ru/eng/semr26
  • https://www.mathnet.ru/eng/semr/v2/p218
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024