Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 413–424 (Mi semr251)  

This article is cited in 1 scientific paper (total in 1 paper)

Reviews

The increasing smoothness property of solutions to some hyperbolic problems in two independent variables

N. A. Lyul'ko

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (761 kB) Citations (1)
References:
Abstract: The initial-boundary problems for first-order hyperbolic systems and for the wave equation are considered in the half-strip $\Pi=\{(x,t):0<x<1$, $t>0\}$. Boundary conditions which guarantee the increasing of smoothness of the solutions to the considered problems as $t$ grows are formulated.
Keywords: first-order hyperbolic systems on the plane, wave equation, initial-boundary problems, increasing smoothness of the solutions.
Received January 25, 2010, published November 11, 2010
Bibliographic databases:
Document Type: Article
UDC: 517.956.3
MSC: 35L50, 35B65
Language: English
Citation: N. A. Lyul'ko, “The increasing smoothness property of solutions to some hyperbolic problems in two independent variables”, Sib. Èlektron. Mat. Izv., 7 (2010), 413–424
Citation in format AMSBIB
\Bibitem{Lyu10}
\by N.~A.~Lyul'ko
\paper The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 413--424
\mathnet{http://mi.mathnet.ru/semr251}
\elib{https://elibrary.ru/item.asp?id=15522160}
Linking options:
  • https://www.mathnet.ru/eng/semr251
  • https://www.mathnet.ru/eng/semr/v7/p413
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024