Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 284–339 (Mi semr245)  

Research papers

The theory of fractional differential equation of the oscillatory type with attenuating part

K. K. Kazbekov

South Mathematical Institute of VSC RAS, Vladikavkaz
References:
Abstract: General solution of the Cauchy problem for the class of fractional differential equations of the oscillatory type with attenuating part in the operator field of relations is found in the paper. For new generalized function of the Mittag-Leffler type with the help of which the general solution is represented a series of basic properties is being proved. Formal examples of the equation theory application in some generalized problems of theoretical mechanics such as motion of mathematical pendulum, motion of spherical pendulum, motion of heavy symmetric top with fixed low point and the Foucault pendulum theory are given.
Keywords: equation of oscillator, function of the Mittag-Leffler, pendulum.
Received April 20, 2010, published October 4, 2010
Bibliographic databases:
Document Type: Article
UDC: 517.968.73, 517.933
MSC: 39A99
Language: Russian
Citation: K. K. Kazbekov, “The theory of fractional differential equation of the oscillatory type with attenuating part”, Sib. Èlektron. Mat. Izv., 7 (2010), 284–339
Citation in format AMSBIB
\Bibitem{Kaz10}
\by K.~K.~Kazbekov
\paper The theory of fractional differential equation of the oscillatory type with attenuating part
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 284--339
\mathnet{http://mi.mathnet.ru/semr245}
\elib{https://elibrary.ru/item.asp?id=15522154}
Linking options:
  • https://www.mathnet.ru/eng/semr245
  • https://www.mathnet.ru/eng/semr/v7/p284
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :102
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024