Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 162–165 (Mi semr240)  

Short communications

Dynamical contours and limits of stable autonomous motions

E. P. Volokitin, V. V. Ivanov, V. M. Cheresiz

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is shown that every dynamical contour can serve as the dynamical limit of a Lyapunov stable motion of an autonomous system. If the contour consists entirely of stationary points, the contour can be the limit of an asymptotically stable motion.
Keywords: autonomous systems, $\omega$-limit points, Lyapunov stability, asymptotic stability, dynamical contours, synchronous serpentine.
Received August 17, 2010, published August 23, 2010
Document Type: Article
UDC: 517.93
MSC: 34C, 34D
Language: Russian
Citation: E. P. Volokitin, V. V. Ivanov, V. M. Cheresiz, “Dynamical contours and limits of stable autonomous motions”, Sib. Èlektron. Mat. Izv., 7 (2010), 162–165
Citation in format AMSBIB
\Bibitem{VolIvaChe10}
\by E.~P.~Volokitin, V.~V.~Ivanov, V.~M.~Cheresiz
\paper Dynamical contours and limits of stable autonomous motions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 162--165
\mathnet{http://mi.mathnet.ru/semr240}
Linking options:
  • https://www.mathnet.ru/eng/semr240
  • https://www.mathnet.ru/eng/semr/v7/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :64
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024