Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 115–118 (Mi semr233)  

This article is cited in 1 scientific paper (total in 1 paper)

Research papers

Extending pairings to Hamiltonian cycles

D. G. Fon-Der-Flaass

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (642 kB) Citations (1)
References:
Abstract: Recently J. Fink proved that every $1$-factor of the complete graph on the vertex set of the hypercube $Q_n$ can be extended to a cycle by adding some edges of this hypercube. We prove that, for $n\ge4$, one can remove some edges of $Q_n$ so that the resulting graph still has this property. Also we give upper and lower bounds on the minimum number of edges of a $2n$-vertex graph having this property.
Keywords: $1$-factor, Hamiltonian cycle, Kreweras Conjecture, hypercube.
Received April 27, 2010, published May 28, 2010
Bibliographic databases:
Document Type: Article
UDC: 519.174
MSC: 05C15
Language: English
Citation: D. G. Fon-Der-Flaass, “Extending pairings to Hamiltonian cycles”, Sib. Èlektron. Mat. Izv., 7 (2010), 115–118
Citation in format AMSBIB
\Bibitem{Fon10}
\by D.~G.~Fon-Der-Flaass
\paper Extending pairings to Hamiltonian cycles
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 115--118
\mathnet{http://mi.mathnet.ru/semr233}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2674265}
Linking options:
  • https://www.mathnet.ru/eng/semr233
  • https://www.mathnet.ru/eng/semr/v7/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :73
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024