Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 65–75 (Mi semr228)  

This article is cited in 8 scientific papers (total in 8 papers)

Research papers

On perfect $2$-colorings of the hypercube

K. V. Vorobeva, D. G. Fon-Der-Flaassb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (520 kB) Citations (8)
References:
Abstract: A vertex coloring of a graph is called perfect if the multiset of colors appearing on the neighbours of any vertex depends only on the color of the vertex. The parameters of a perfect coloring are thus given by a $n\times n$ matrix, where $n$ is the number of colors.
We give a recursive construction which can produce many different perfect colorings of the hypercube $H_n $ with $2$ colors and the parameters $\left({
\begin{array}{ll} a & b\\c & d \end{array}
}\right)$ satisfying the conditions $({b,c})=1,b+c=2^m$, $c>1$. In particular, this construction allows one to find many non-isomorphic perfect colorings with the parameters $\left( {
\begin{array}{ll} k\cdot a & k\cdot b \\ k\cdot c & k\cdot d \end{array}
}\right)$. For the parameters $\left({
\begin{array}{ll} a & b\\c & d \end{array}
}\right)$ satisfying the extra condition $a\ge c-({b,c})$, we find a lower bound on the number of produced colorings which is hyperexponential in $n$.
Keywords: Hypercube, perfect coloring, perfect code.
Received December 22, 2009, published March 10, 2010
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 76S05
Language: Russian
Citation: K. V. Vorobev, D. G. Fon-Der-Flaass, “On perfect $2$-colorings of the hypercube”, Sib. Èlektron. Mat. Izv., 7 (2010), 65–75
Citation in format AMSBIB
\Bibitem{VorFon10}
\by K.~V.~Vorobev, D.~G.~Fon-Der-Flaass
\paper On perfect $2$-colorings of the hypercube
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 65--75
\mathnet{http://mi.mathnet.ru/semr228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2610166}
Linking options:
  • https://www.mathnet.ru/eng/semr228
  • https://www.mathnet.ru/eng/semr/v7/p65
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :138
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024