Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2010, Volume 7, Pages 42–51 (Mi semr226)  

Research papers

On intersections Sylov subgroups in finite groups, II

V. I. Zenkov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The finite groups with simple socle $K$ are considered, where $K$ is exeptional group of Lee type over field of order $3$. For Sylov $2$-subgroup $S$ let $l_2(G)$ be a number of $S$-orbits on the set $X=\{S^g\mid S\cap S^g=1,g\in G\}$. It is proved that $l_2(G)\ge3$.
Keywords: intersections, simple group.
Received December 10, 2009, published February 8, 2010
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20B15
Language: Russian
Citation: V. I. Zenkov, “On intersections Sylov subgroups in finite groups, II”, Sib. Èlektron. Mat. Izv., 7 (2010), 42–51
Citation in format AMSBIB
\Bibitem{Zen10}
\by V.~I.~Zenkov
\paper On intersections Sylov subgroups in finite groups,~II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2010
\vol 7
\pages 42--51
\mathnet{http://mi.mathnet.ru/semr226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2610164}
Linking options:
  • https://www.mathnet.ru/eng/semr226
  • https://www.mathnet.ru/eng/semr/v7/p42
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024