Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2006, Volume 3, Pages 393–401 (Mi semr216)  

Research papers

On uniformly continuous operators and some weight-hyperbolic function Banach algebra

Ana L. Barrenechea, Carlos C. Peña

UNCentro – FCExactas – NuCoMPA, Dpto. de Matemáticas, Argentina
References:
Abstract: We consider an abelian non-unitary Banach algebra $\mathfrak{A}$, ruled by an hyperbolic weight, defined on certain space of Lebesgue measurable complex valued functions on the positive axis. Since the non-convolution Banach algebra $\mathfrak{A}$ has its own interest by its applications to the representation theory of some Lie groups, we search on various of its properties. As a Banach space, $\mathfrak{A}$ does not have the Radon–Nikodým property. So, it could be exist not representable linear bounded operators on $\mathfrak{A}$ (cf. [6]). However, we prove that the class of locally absolutely continuous bounded operators are representable and we determine their kernels.
Received December 19, 2005, published December 18, 2006
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46J20, 46J40
Language: English
Citation: Ana L. Barrenechea, Carlos C. Peña, “On uniformly continuous operators and some weight-hyperbolic function Banach algebra”, Sib. Èlektron. Mat. Izv., 3 (2006), 393–401
Citation in format AMSBIB
\Bibitem{BarPen06}
\by Ana L.~Barrenechea, Carlos C.~Pe\~na
\paper On uniformly continuous operators and some weight-hyperbolic function Banach algebra
\jour Sib. \`Elektron. Mat. Izv.
\yr 2006
\vol 3
\pages 393--401
\mathnet{http://mi.mathnet.ru/semr216}
\zmath{https://zbmath.org/?q=an:1119.46039}
Linking options:
  • https://www.mathnet.ru/eng/semr216
  • https://www.mathnet.ru/eng/semr/v3/p393
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024