Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2006, Volume 3, Pages 304–311 (Mi semr206)  

This article is cited in 17 scientific papers (total in 17 papers)

Research papers

On permutations generated by infinite binary words

M. A. Makarov

Novosibirsk State University
References:
Abstract: Let $w=w(1)w(2)\ldots w(n)\ldots$ be an arbitrary non-periodic infinite word on $\{0,1\}$. For every $i\in\mathbb{N}$ we may consider the binary real number $R_w(i)=0,w(i)w(i+1)\dots$. For all $n\in\mathbb{N}$ the numbers $R_w(1),\ldots,R_w(n)$ generate some permutation $\pi_w^n$ of length $n$ such that for all $i,j\in\{1,\ldots,n\}$ the inequalities $\pi_w^n(i)<\pi_w^n(j)$ and $R_w(i)<R_w(j)$ are equivalent. A permutation is said to be { it valid} if it is generated by some word. In this paper we investigate some properties of valid permutations. In particular, we prove a precise formula for the number of valid permutations of a given length. Also we consider a problem of continuability of valid permutations to the left.
Received November 23, 2005, published July 25, 2006
Bibliographic databases:
Document Type: Article
UDC: 519.1
MSC: 68R05
Language: Russian
Citation: M. A. Makarov, “On permutations generated by infinite binary words”, Sib. Èlektron. Mat. Izv., 3 (2006), 304–311
Citation in format AMSBIB
\Bibitem{Mak06}
\by M.~A.~Makarov
\paper On permutations generated by infinite binary words
\jour Sib. \`Elektron. Mat. Izv.
\yr 2006
\vol 3
\pages 304--311
\mathnet{http://mi.mathnet.ru/semr206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2276028}
\zmath{https://zbmath.org/?q=an:1150.68389}
Linking options:
  • https://www.mathnet.ru/eng/semr206
  • https://www.mathnet.ru/eng/semr/v3/p304
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024