|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2006, Volume 3, Pages 291–303
(Mi semr205)
|
|
|
|
Research papers
Asymptotic profile of solutions for the critical Sobolev type equation on a half-line
R. A. Goldstein, M. K. Silva, A. G. Crans Instituto de Matemáticas, UF-Rio, Brasil
Abstract:
We study nonlinear Sobolev type equations on half-line
\[
\{
\begin{array}
[c]{c}
\partial_{t}u+\mathbb{L}u=\lambda|u|^{\rho}u_{x}^{\sigma}, x\in\mathbf{R}^{+}, t>0,
u(0,x)=u_{0}(x), x\in\mathbf{R}^{+},
\end{array}
.
\]
with $\rho+\sigma=\frac52,\rho>0,\sigma>0,\lambda\in\mathbf{C}$. The linear operator $\mathbb{L}$ is defined as
\[
\mathbb{L}=\mathcal{L}^{-1}K(p)\mathcal{L}.
\]
Here $\mathcal{L}^{-1}$ and $\mathcal{L}$ are Laplace transform and inverse Laplace transform with respect to space variable $x$ and
\begin{equation*}
K(p)=p^{2}\sum_{j=0}^{m}a_{j}p^{2j}\left(\sum_{l=0}^{m+1}b_{l}p^{2l}\right) ^{-1},
\end{equation*}
$m>0$ is integer number.The aim of this paper is to prove the global existence of solutions to the
initial-boundary value problem and to find the main term of the asymptotic representation of solutions in the critical convective case.
Received March 14, 2006, published July 24, 2006
Citation:
R. A. Goldstein, M. K. Silva, A. G. Crans, “Asymptotic profile of solutions for the critical Sobolev type equation on a half-line”, Sib. Èlektron. Mat. Izv., 3 (2006), 291–303
Linking options:
https://www.mathnet.ru/eng/semr205 https://www.mathnet.ru/eng/semr/v3/p291
|
Statistics & downloads: |
Abstract page: | 184 | Full-text PDF : | 44 | References: | 35 |
|