Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2006, Volume 3, Pages 62–66 (Mi semr181)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

Ideal Turaev–Viro invariants

Simon A. King

Technische Universität Darmstadt, Germany
Full-text PDF (299 kB) Citations (1)
References:
Abstract: Turaev–Viro invariants are defined via state sum polynomials associated to special spines of a $3$-manifold. Its evaluation at solutions of certain polynomial equations yields a homeomorphism invariant of the manifold, called a numerical Turaev–Viro invariant. The coset of the state sum modulo the ideal generated by the equations also is a homeomorphism invariant of compact $3$-manifolds, called an { it ideal Turaev–Viro invariant}. Ideal Turaev–Viro invariants are at least as strong as numerical ones, without the need to compute any explicit solution of the equations. We computed various ideal Turaev–Viro invariants for closed orientable irreducible manifolds of complexity up to $9$. This is an outline of [5].
Received February 27, 2006, published March 1, 2006
Bibliographic databases:
Document Type: Article
UDC: 514.13
MSC: 57M25, 57N10
Language: English
Citation: Simon A. King, “Ideal Turaev–Viro invariants”, Sib. Èlektron. Mat. Izv., 3 (2006), 62–66
Citation in format AMSBIB
\Bibitem{Kin06}
\by Simon A.~King
\paper Ideal Turaev--Viro invariants
\jour Sib. \`Elektron. Mat. Izv.
\yr 2006
\vol 3
\pages 62--66
\mathnet{http://mi.mathnet.ru/semr181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2172792}
\zmath{https://zbmath.org/?q=an:1117.57010}
Linking options:
  • https://www.mathnet.ru/eng/semr181
  • https://www.mathnet.ru/eng/semr/v3/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :54
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024