Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2005, Volume 2, Pages 79–82 (Mi semr18)  

Research papers

A note on codes and kets

M. Caragiu

Ohio Northern University, Department of Mathematics
References:
Abstract: To every binary linear $[n,k]$ code $C$ we associate a quantum state $|\Psi_C\rangle\in H^{\otimes n}$, where $H$ is the two-dimensional complex Hilbert space associated to the spin $\frac12$ particle. For the state $|\Psi_C\rangle$ we completely characterize all the expectation values of the products of spins measured, for each one out of the $n$ particles, either in the $x$- or in the $y$-direction. This establishes an interesting relationship with the dual code $C^{\perp}$.
Received April 25, 2005, published June 28, 2005
Bibliographic databases:
Document Type: Article
UDC: 519.72
MSC: 15A90, 94B05, 81P15
Language: English
Citation: M. Caragiu, “A note on codes and kets”, Sib. Èlektron. Mat. Izv., 2 (2005), 79–82
Citation in format AMSBIB
\Bibitem{Car05}
\by M.~Caragiu
\paper A~note on codes and kets
\jour Sib. \`Elektron. Mat. Izv.
\yr 2005
\vol 2
\pages 79--82
\mathnet{http://mi.mathnet.ru/semr18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2152924}
\zmath{https://zbmath.org/?q=an:1097.94028}
Linking options:
  • https://www.mathnet.ru/eng/semr18
  • https://www.mathnet.ru/eng/semr/v2/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :30
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024