Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 596–604 (Mi semr173)  

Research papers

Positivåly prime models over a normal basic set

E. A. Palyutin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: For given universal domain $C$, a set $\mathrm{BF}$ of normal formulas, and $A\subseteq C$, we construct substructures $B$ of $C$ with the following properties: (a) $A\subseteq B$; (b) for each $a\in B$ the type ${\rm tp}(a;(B\setminus\{a\}))$ is based by formulas from $\mathrm{BF}$. The existence and uniqueness theorems are proven. This is a generalization of the known results on the injective hulls in the variety of the modules in case when the theory $\mathrm{Th}(C^\omega)$ is stable.
Received December 12, 2007, published December 28, 2007
Bibliographic databases:
Document Type: Article
UDC: 510.67
MSC: 13A99
Language: Russian
Citation: E. A. Palyutin, “Positivåly prime models over a normal basic set”, Sib. Èlektron. Mat. Izv., 4 (2007), 596–604
Citation in format AMSBIB
\Bibitem{Pal07}
\by E.~A.~Palyutin
\paper Positivåly prime models over a~normal basic set
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 596--604
\mathnet{http://mi.mathnet.ru/semr173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465442}
\zmath{https://zbmath.org/?q=an:1132.03339}
Linking options:
  • https://www.mathnet.ru/eng/semr173
  • https://www.mathnet.ru/eng/semr/v4/p596
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :49
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024