Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 1, Pages 501–512
DOI: https://doi.org/doi.org/10.33048/semi.2024.21.036
(Mi semr1699)
 

Mathematical logic, algebra and number theory

Finite groups with modular and submodular subgroups

I. L. Sokhor

Francisk Skorina Gomel State University, Kirova Str. 119, 246019, Gomel, Belarus
Abstract: A subgroup $H$ of a group $G$ is modular in $G$ if $H$ is a modular element of subgroup lattice of $G$, and is submodular in $G$ if there is a subgroup chain $H=H_0\leq\ldots\leq H_i\leq H_{i+1}\leq \ldots \leq H_n=G$ such that $H_i$ is modular in $H_{i+1}$ for every $i$. We prove that if every Sylow subgroup of a group $G$ is modular in $G$, then $G$ is supersolvable and $G/F(G)$ is a cyclic group of square-free order. We also obtain new signs of supersolvabilty of groups with some submodular subgroups (normalizers of Sylow subgroups, Hall subgroups, maximal subgroups). For a such group $G$, $G/\Phi(G)$ is a supersolvable group of square-free exponent. Moreover, we describe the structure of groups with modular (submodular) or self-normalizing primary subgroups.
Keywords: finite group, modular subgroup, submodular subgroup, self-normalizing subgroup.
Funding agency Grant number
Ministry of Education of the Republic of Belarus 20211467
The work was supported by the Ministry of Education of Belarus (Grant number 20211467).
Received December 29, 2023, published June 23, 2024
Document Type: Article
UDC: 512.542
MSC: 20D30
Language: English
Citation: I. L. Sokhor, “Finite groups with modular and submodular subgroups”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 501–512
Citation in format AMSBIB
\Bibitem{Sok24}
\by I.~L.~Sokhor
\paper Finite groups with modular and submodular subgroups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 1
\pages 501--512
\mathnet{http://mi.mathnet.ru/semr1699}
\crossref{https://doi.org/doi.org/10.33048/semi.2024.21.036}
Linking options:
  • https://www.mathnet.ru/eng/semr1699
  • https://www.mathnet.ru/eng/semr/v21/i1/p501
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024