Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 1, Pages 277–292
DOI: https://doi.org/doi.org/10.33048/semi.2024.21.021
(Mi semr1684)
 

Mathematical logic, algebra and number theory

The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories

M. G. Peretyat'kin

Institute of Mathematics and Mathematical Modeling, Shevchenko 28, 050010, Almaty, Kazakhstan
Abstract: We study the class of all prime strongly constructivizable models of infinite algorithmic dimensions having $\omega$-stable theories in a fixed finite rich signature. It is proved that the Tarski-Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $\Sigma^1_1$-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of Boolean $\Sigma^1_1$-algebras. This gives a characterization to the Tarski–Lindenbaum algebra of the class of all prime strongly constructivizable models of infinite algorithmic dimensions having $\omega$-stable theories.
Keywords: Tarski–Lindenbaum algebra, strongly constructive model, computable isomorphism, semantic class of models, $\omega$-stable theory, prime model.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan BR20281002
This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No BR20281002.
Received December 14, 2023, published April 8, 2024
Document Type: Article
UDC: 510.67
MSC: 03B10, 03D35
Language: English
Citation: M. G. Peretyat'kin, “The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 277–292
Citation in format AMSBIB
\Bibitem{Per24}
\by M.~G.~Peretyat'kin
\paper The Tarski--Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 1
\pages 277--292
\mathnet{http://mi.mathnet.ru/semr1684}
\crossref{https://doi.org/doi.org/10.33048/semi.2024.21.021}
Linking options:
  • https://www.mathnet.ru/eng/semr1684
  • https://www.mathnet.ru/eng/semr/v21/i1/p277
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:4
    Full-text PDF :1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024