Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1499–1518
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.093
(Mi semr1656)
 

Discrete mathematics and mathematical cybernetics

On the structure of one class of perfect $\Pi$-partitions

K. L. Rychkov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: The concept of $\Pi$-partition is an analogue of the concept of normalized formula (a formula in the basis $\{\vee,\wedge,^-\}$ in which negations are possible only over variables) and concept of $\Pi$-schema, just as these last two concepts are analogues of each other. At its core, a $\Pi$-partition is a kind of "imprint" of a formula in the Boolean function calculated by this formula and is considered as a representation of this formula. In order to describe the class of minimal normalized formulas that calculate linear Boolean functions, the structure of the $\Pi$-partitions representing these formulas has been clarified.
Keywords: boolean functions, $\pi$-schemes, normalized formulas, lower bounds on the complexity, formula representation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
Received November 26, 2023, published December 22, 2023
Document Type: Article
UDC: 519.714
MSC: 03D15
Language: Russian
Citation: K. L. Rychkov, “On the structure of one class of perfect $\Pi$-partitions”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1499–1518
Citation in format AMSBIB
\Bibitem{Ryc23}
\by K.~L.~Rychkov
\paper On the structure of one class of perfect $\Pi$-partitions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1499--1518
\mathnet{http://mi.mathnet.ru/semr1656}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.093}
Linking options:
  • https://www.mathnet.ru/eng/semr1656
  • https://www.mathnet.ru/eng/semr/v20/i2/p1499
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:32
    Full-text PDF :17
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024