Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1396–1404
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.085
(Mi semr1648)
 

Mathematical logic, algebra and number theory

Simple Novikov–Poisson algebras

A. S. Zakharovabc

a Novosibirsk State Technical University, 20, K. Marksa pr., Novosibirsk, 630073, Russia
b Sobolev Institute of Mathematics SB RAS 4, Acad. Koptyug pr., Novosibirsk, 630090, Russia
c Novosibirsk State University 1, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: We proved if $A$ is a simple Novikov — Poisson (super)algebra then their Novikov part is a simple algebra when field characteristic is not 2. Also we obtained all finite dimension simple Novikov — Poisson algebras over a field of characteristic not $2$.
Keywords: Novikov (super)algebra, Novikov — Poisson (super)algebra, differential algebra, commutative algebra, simple algebra.
Funding agency Grant number
Russian Science Foundation 21-11-00286
Received August 10, 2023, published December 6, 2023
Document Type: Article
UDC: 512.554
MSC: 17A70
Language: Russian
Citation: A. S. Zakharov, “Simple Novikov–Poisson algebras”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1396–1404
Citation in format AMSBIB
\Bibitem{Zak23}
\by A.~S.~Zakharov
\paper Simple Novikov--Poisson algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1396--1404
\mathnet{http://mi.mathnet.ru/semr1648}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.085}
Linking options:
  • https://www.mathnet.ru/eng/semr1648
  • https://www.mathnet.ru/eng/semr/v20/i2/p1396
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :27
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024