Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1269–1289
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.076
(Mi semr1639)
 

Differentical equations, dynamical systems and optimal control

Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)

D. L. Tkachev, E. A. Biberdorf

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymmetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model.
We formulate two equations that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Keywords: incompressible viscoelastic polymeric medium, rheological correlation, resting state, linearized mixed problem, Lyapunov stability.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
Received September 3, 2023, published November 21, 2023
Document Type: Article
UDC: 517.984.5, 532.135
MSC: 35B35, 76A05, 76A10
Language: English
Citation: D. L. Tkachev, E. A. Biberdorf, “Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1269–1289
Citation in format AMSBIB
\Bibitem{TkaBib23}
\by D.~L.~Tkachev, E.~A.~Biberdorf
\paper Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1269--1289
\mathnet{http://mi.mathnet.ru/semr1639}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.076}
Linking options:
  • https://www.mathnet.ru/eng/semr1639
  • https://www.mathnet.ru/eng/semr/v20/i2/p1269
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:38
    Full-text PDF :10
    References:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024