Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1200–1210
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.074
(Mi semr1637)
 

Mathematical logic, algebra and number theory

On equivalence classes of matrices over a finite field of odd characteristic

E. V. Zhuravlev

Altai State University, pr. Lenina, 61, 656049, Barnaul, Russia
References:
Abstract: In this article we classified up to isomorphism all finite local rings $R$ with Jacobson radical $J$ and conditions:
$$\mathrm{char} R\neq 2,\ R/J=F\subseteq Z(R),\ {\dim_F J/J^2=2},\ {\dim_F J^2=3},\ {J^3=0}.$$
Keywords: finite rings, local rings.
Received July 14, 2023, published December 7, 2023
Document Type: Article
UDC: 512.55
MSC: 16P10,16W20
Language: Russian
Citation: E. V. Zhuravlev, “On equivalence classes of matrices over a finite field of odd characteristic”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1200–1210
Citation in format AMSBIB
\Bibitem{Zhu23}
\by E.~V.~Zhuravlev
\paper On equivalence classes of matrices over a finite field of odd characteristic
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1200--1210
\mathnet{http://mi.mathnet.ru/semr1637}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.074}
Linking options:
  • https://www.mathnet.ru/eng/semr1637
  • https://www.mathnet.ru/eng/semr/v20/i2/p1200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :16
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024