Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1185–1199
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.073
(Mi semr1636)
 

Real, complex and functional analysis

Multivalued quasimöbius property and bounded turning

N. V. Abrosimov, V. V. Aseev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: The class of multivalued mappings with bounded angular distortion (BAD) property in metric spaces can be considered as a multivalued analogгу for quasimöbius mappings. We study the connections between quasimeromorphic self-mappings of $X= \bar{R}^n$ and multivalued mappings $F: X\to 2^X$ with BAD property. The main result of the paper concerns the multivalued mappings $F: D\to 2^{\bar{\mathbf C}}$ with BAD property of a domain $D\subset \bar{\mathbf{C}}$. If the image $F(x)$ of each point $x\in D$ is either a point or a continuum with bounded turning then $F$ is proved to be a single-valued quasimöbius mapping. The crucial point in the proof of this result is the local connectedness of the set $F(X)$ for the multivalued continuous mapping $F: X\to 2^Y$ with BAD property. We obtain sufficient conditions providing $F(X)$ to have local connectedness or bounded turning property in the most general case.
Keywords: multivalued quasimöbius mapping, multivalued hyperinjective mapping, Ptolemaic characteristic of tetrad, generalized angle, bounded angular distortion, local connectedness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0005
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0005).
Received October 1, 2023, published November 20, 2023
Document Type: Article
UDC: 517.54
MSC: 30C65, 30L10
Language: English
Citation: N. V. Abrosimov, V. V. Aseev, “Multivalued quasimöbius property and bounded turning”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1185–1199
Citation in format AMSBIB
\Bibitem{AbrAse23}
\by N.~V.~Abrosimov, V.~V.~Aseev
\paper Multivalued quasim\"obius property and bounded turning
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1185--1199
\mathnet{http://mi.mathnet.ru/semr1636}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.073}
Linking options:
  • https://www.mathnet.ru/eng/semr1636
  • https://www.mathnet.ru/eng/semr/v20/i2/p1185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:38
    Full-text PDF :25
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024