Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1093–1107
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.068
(Mi semr1631)
 

Discrete mathematics and mathematical cybernetics

Linear and additive perfect codes over skew fields and quasi skew fields

S. A. Malyugin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: In this paper, we propose a general construction of linear perfect codes over infinite skew fields and quasi skew fields with right (left) unity. A complete classification of such codes over associative skew fields is given. Since the cardinality of the considered skew fields is infinite, the constructed codes have an infinite length. In the previous work, we considered codes over infinite countable fields, the length of which was also countable. We now remove this restriction and assume that the cardinality of the skew field and the length of the codes can be arbitrary (not necessarily countable).
Keywords: skew field, quasi skew field, perfect code, checking matrix, quaternions, octonions.
Funding agency Grant number
Russian Science Foundation 22-11-00266
Received April 25, 2023, published November 23, 2023
Document Type: Article
UDC: 519.72
MSC: 94B60
Language: Russian
Citation: S. A. Malyugin, “Linear and additive perfect codes over skew fields and quasi skew fields”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1093–1107
Citation in format AMSBIB
\Bibitem{Mal23}
\by S.~A.~Malyugin
\paper Linear and additive perfect codes over skew fields and quasi skew fields
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1093--1107
\mathnet{http://mi.mathnet.ru/semr1631}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.068}
Linking options:
  • https://www.mathnet.ru/eng/semr1631
  • https://www.mathnet.ru/eng/semr/v20/i2/p1093
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:34
    Full-text PDF :12
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024