Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1026–1036
DOI: https://doi.org/10.33048/semi.2023.20.063
(Mi semr1626)
 

Real, complex and functional analysis

Inverse spectral problem for an antisymmetric tridiagonal matrix

A. I. Gudimenko

Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, ul. Radio, 7, 690041, Vladivostok, Russia
References:
Abstract: The problem of recovering an antisymmetric tridiagonal matrix from the eigenvalues of this matrix and the normalizing constants for its eigenvectors is solved. Matrices of this type arise in the theory of small oscillations of mechanical systems and are related to the matrices of the systems through the Schrödinger transformation. The problem is solved by the method of orthogonal polynomials.
Keywords: inverse spectral problem, antisymmetric tridiagonal matrix, Schrödinger variables.
Received February 26, 2023, published November 12, 2023
Document Type: Article
UDC: 517.984
Language: Russian
Citation: A. I. Gudimenko, “Inverse spectral problem for an antisymmetric tridiagonal matrix”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1026–1036
Citation in format AMSBIB
\Bibitem{Gud23}
\by A.~I.~Gudimenko
\paper Inverse spectral problem for an antisymmetric tridiagonal matrix
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1026--1036
\mathnet{http://mi.mathnet.ru/semr1626}
\crossref{https://doi.org/10.33048/semi.2023.20.063}
Linking options:
  • https://www.mathnet.ru/eng/semr1626
  • https://www.mathnet.ru/eng/semr/v20/i2/p1026
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :27
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024