Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 981–986
DOI: https://doi.org/10.33048/semi.2023.20.059
(Mi semr1622)
 

Differentical equations, dynamical systems and optimal control

A variational inequality for the Sturm–Liouville problem with discontinuous nonlinearity

D. K. Potapov

Saint Petersburg State University, Universitetskaya nab., 7/9, 199034, St. Petersburg, Russia
References:
Abstract: We study a variational inequality for the Sturm–Liouville problem with a nonlinearity that is discontinuous in the phase variable. Previously obtained results for variational inequalities with a spectral parameter and discontinuous operators are applied to this problem. For the variational inequality in the Sturm–Liouville problem with discontinuous nonlinearity, we have established theorems on the existence of semiregular solutions and some bound for the parameter. As an application, we consider the variational inequality for a one-dimensional analog of the Gol'dshtik model for separated flows of an incompressible fluid.
Keywords: variational inequality, Sturm–Liouville's problem, discontinuous nonlinearity, Gol'dshtik's model.
Funding agency Grant number
Russian Science Foundation 23-21-00069
Received January 13, 2023, published November 14, 2023
Document Type: Article
UDC: 517.911.5, 517.927
MSC: 34A36, 34B24
Language: Russian
Citation: D. K. Potapov, “A variational inequality for the Sturm–Liouville problem with discontinuous nonlinearity”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 981–986
Citation in format AMSBIB
\Bibitem{Pot23}
\by D.~K.~Potapov
\paper A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 981--986
\mathnet{http://mi.mathnet.ru/semr1622}
\crossref{https://doi.org/10.33048/semi.2023.20.059}
Linking options:
  • https://www.mathnet.ru/eng/semr1622
  • https://www.mathnet.ru/eng/semr/v20/i2/p981
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024