Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 345–360 (Mi semr162)  

This article is cited in 15 scientific papers (total in 15 papers)

Research papers

Regular orbits of solvable linear $p'$-groups

E. P. Vdovin

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: In this paper we prove that a solvable linear $p'$-group $G\le GL(V)$, where $p$ is the characteristic of the underlying field of $V$, has a regular orbit on $V\times V$.
Received August 23, 2007, published September 7, 2007
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 20D10, 20D20
Language: English
Citation: E. P. Vdovin, “Regular orbits of solvable linear $p'$-groups”, Sib. Èlektron. Mat. Izv., 4 (2007), 345–360
Citation in format AMSBIB
\Bibitem{Vdo07}
\by E.~P.~Vdovin
\paper Regular orbits of solvable linear $p'$-groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 345--360
\mathnet{http://mi.mathnet.ru/semr162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465432}
\zmath{https://zbmath.org/?q=an:1134.20058}
Linking options:
  • https://www.mathnet.ru/eng/semr162
  • https://www.mathnet.ru/eng/semr/v4/p345
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024