Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 923–941
DOI: https://doi.org/10.33048/semi.2023.20.056
(Mi semr1619)
 

Discrete mathematics and mathematical cybernetics

Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max

A. N. Glebova, S. S. Lylovab, S. G. Toktokhoevab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova Street, 2, 630090, Novosibirsk, Russia
References:
Abstract: We present new polynomial approximation algorithms for the $2$-Perpatetic Salesman Problem and the $2$-Cycle Cover Problem. The $m$-Perpatetic Salesman Problem ($m$-PSP) is a generalization of the classical Traveling Salesman Problem. In the $m$-PSP, we need to find $m$ edge disjoint Hamiltonian cycles of the extremal total weight in a complete weighted graph $G=(V,E)$. In the $m$-Cycle Cover Problem ($m$-CC), we need to find $m$ edge disjoint cycle covers of the extremal weight in $G$. Many exact and approximation algorithms were proposed for the case of $m$-PSP where we are given only one weight function $w:E \rightarrow R^+$ and the weight of $m$ Hamiltonian cycles $H_1,H_2,\ldots,H_m$ is defined as $w(H_1)+ \ldots +w(H_m)$. However, not so many results are known for the case when we are given $m$ distinct weight functions $w_1,w_2,\ldots,w_m$ and the weight of $H_1,H_2,\ldots,H_m$ is defined as $w_1(H_1)+w_2(H_2)+\ldots +w_m(H_m)$ (the $m$-PSP-$m$W problem). Here we present a series of polynomial algorithms with approximation ratios $1/2$ and higher for the $2$-PSP-max-2W. As a supporting result, we produce a polynomial algorithm with the asymptotic ratio $\frac 23$ for the $2$-CC-max-$2W$ problem.
Keywords: Traveling Salesman Problem, $2$-Perpatetic Salesman Problem, Cycle Cover Problem, approximation algorithm, guaranteed approximation ratio, weight function.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0017
Received December 11, 2022, published December 12, 2023
Document Type: Article
UDC: 519.168, 519.712.3
MSC: 90C27, 05C85, 68W25
Language: Russian
Citation: A. N. Glebov, S. S. Lylova, S. G. Toktokhoeva, “Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 923–941
Citation in format AMSBIB
\Bibitem{GleLylTok23}
\by A.~N.~Glebov, S.~S.~Lylova, S.~G.~Toktokhoeva
\paper Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 923--941
\mathnet{http://mi.mathnet.ru/semr1619}
\crossref{https://doi.org/10.33048/semi.2023.20.056}
Linking options:
  • https://www.mathnet.ru/eng/semr1619
  • https://www.mathnet.ru/eng/semr/v20/i2/p923
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:30
    Full-text PDF :15
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024