Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 913–922
DOI: https://doi.org/10.33048/semi.2023.20.055
(Mi semr1618)
 

Probability theory and mathematical statistics

Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes

M. G. Chebuninab, A. P. Kovalevskiicd

a Karlsruhe Institute of Technology, Institute of Stochastics, 76131, Karlsruhe, Germany
b Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Koptyuga pr., 4, Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
d Novosibirsk State Technical University, K. Marksa ave., 20, 630073, Novosibirsk, Russia
References:
Abstract: We study the joint asymptotics of forward and backward processes of numbers of non-empty urns in an infinite urn scheme. The probabilities of balls hitting the urns are assumed to satisfy the conditions of regular decrease. We prove weak convergence to a two-dimensional Gaussian process. Its covariance function depends only on exponent of regular decrease of probabilities. We obtain parameter estimates that have a normal asymototics for its joint distribution together with forward and backward processes. We use these estimates to construct statistical tests for the homogeneity of the urn scheme on the number of thrown balls.
Keywords: Zipf's law, weak convergence, Gaussian process, statistical test.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2022-282 with the Ministry of Science and Higher Education of the Russian Federation.
Received November 1, 2022, published November 12, 2023
Document Type: Article
UDC: 519.233
MSC: 62F03
Language: Russian
Citation: M. G. Chebunin, A. P. Kovalevskii, “Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 913–922
Citation in format AMSBIB
\Bibitem{CheKov23}
\by M.~G.~Chebunin, A.~P.~Kovalevskii
\paper Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 913--922
\mathnet{http://mi.mathnet.ru/semr1618}
\crossref{https://doi.org/10.33048/semi.2023.20.055}
Linking options:
  • https://www.mathnet.ru/eng/semr1618
  • https://www.mathnet.ru/eng/semr/v20/i2/p913
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:49
    Full-text PDF :14
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024