Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 880–912
DOI: https://doi.org/10.33048/semi.2023.020.054
(Mi semr1617)
 

Differentical equations, dynamical systems and optimal control

A Radon type transform related to the Euler equations for ideal fluid

V. A. Sharafutdinov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: We study the Nadirashvili – Vladuts transform $\mathcal{N}$ that integrates second rank tensor fields $f$ on ${\mathbb{R}}^n$ over hyperplanes. More precisely, for a hyperplane $P$ and vector $\eta$ parallel to $P$, ${\mathcal{N}}f(P,\eta)$ is the integral of the function $f_{ij}(x)\xi^i\eta^j$ over $P$, where $\xi$ is the unit normal vector to $P$. We prove that, given a vector field $v$, the tensor field $f=v\otimes v$ belongs to the kernel of $\mathcal{N}$ if and only if there exists a function $p$ such that $(v,p)$ is a solution to the Euler equations. Then we study the Nadirashvili – Vladuts potential $w(x,\xi)$ determined by a solution to the Euler equations. The function $w$ solves some 4th order PDE. We describe all solutions to the latter equation.
Keywords: Euler equations, Nadirashvili – Vladuts transform, tensor tomography.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
The work was performed according to the Government research assignment for IM SB RAS, project FWNF-2022-0006.
Received May 27, 2023, published October 26, 2023
Document Type: Article
UDC: 517.9
MSC: Primary 76B03, 76V99; Secondary 53A45
Language: English
Citation: V. A. Sharafutdinov, “A Radon type transform related to the Euler equations for ideal fluid”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 880–912
Citation in format AMSBIB
\Bibitem{Sha23}
\by V.~A.~Sharafutdinov
\paper A Radon type transform related to the Euler equations for ideal fluid
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 880--912
\mathnet{http://mi.mathnet.ru/semr1617}
\crossref{https://doi.org/10.33048/semi.2023.020.054}
Linking options:
  • https://www.mathnet.ru/eng/semr1617
  • https://www.mathnet.ru/eng/semr/v20/i2/p880
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024