Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 847–853
DOI: https://doi.org/10.33048/semi.2023.20.051
(Mi semr1614)
 

Discrete mathematics and mathematical cybernetics

Edge $4$-critical Koester graph of order $28$

A. A. Dobrynin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: A Koester graph $G$ is a simple $4$-regular plane graph formed by the superposition of a set $S$ of circles in the plane, no two of which are tangent and no three circles have a common point. Crossing points and arcs of $S$ correspond to vertices and edges of $G$, respectively. A graph $G$ is edge critical if the removal of any edge decreases its chromatic number. A $4$–chromatic edge critical Koester graph of order $28$ generated by intersection of six circles is presented. This improves an upper bound for the smallest order of such graphs. The previous upper bound was established by Gerhard Koester in 1984 by constructing a graph with $40$ vertices.
Keywords: plane graph, $4$-critical graph, Grötzsch–Sachs graph, Koester graph.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0017
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project number FWNF-2022-0017).
Received June 3, 2023, published October 26, 2023
Document Type: Article
UDC: 519.17
MSC: 05C15
Language: English
Citation: A. A. Dobrynin, “Edge $4$-critical Koester graph of order $28$”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 847–853
Citation in format AMSBIB
\Bibitem{Dob23}
\by A.~A.~Dobrynin
\paper Edge $4$-critical Koester graph of order $28$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 847--853
\mathnet{http://mi.mathnet.ru/semr1614}
\crossref{https://doi.org/10.33048/semi.2023.20.051}
Linking options:
  • https://www.mathnet.ru/eng/semr1614
  • https://www.mathnet.ru/eng/semr/v20/i2/p847
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:32
    Full-text PDF :16
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024