|
Discrete mathematics and mathematical cybernetics
Edge $4$-critical Koester graph of order $28$
A. A. Dobrynin Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Abstract:
A Koester graph $G$ is a simple $4$-regular plane graph formed by the superposition of a set $S$ of circles in the plane, no two of which are tangent and no three circles have a common point. Crossing points and arcs of $S$ correspond to vertices and edges of $G$, respectively. A graph $G$ is edge critical if the removal of any edge decreases its chromatic number. A $4$–chromatic edge critical Koester graph of order $28$ generated by intersection of six circles is presented. This improves an upper bound for the smallest order of such graphs. The previous upper bound was established by Gerhard Koester in 1984 by constructing a graph with $40$ vertices.
Keywords:
plane graph, $4$-critical graph, Grötzsch–Sachs graph, Koester graph.
Received June 3, 2023, published October 26, 2023
Citation:
A. A. Dobrynin, “Edge $4$-critical Koester graph of order $28$”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 847–853
Linking options:
https://www.mathnet.ru/eng/semr1614 https://www.mathnet.ru/eng/semr/v20/i2/p847
|
Statistics & downloads: |
Abstract page: | 32 | Full-text PDF : | 16 | References: | 11 |
|